A Generalized Scalarization Method for Evolutionary Multi-Objective Optimization
نویسندگان
چکیده
The decomposition-based multi-objective evolutionary algorithm (MOEA/D) transforms a optimization problem (MOP) into set of single-objective subproblems for collaborative optimization. Mismatches between and solutions can lead to severe performance degradation MOEA/D. Most existing mismatch coping strategies only work when the L∞ scalarization is used. A strategy that use any Lp scalarization, even facing MOPs with non-convex Pareto fronts, great significance This paper uses global replacement (GR) as backbone. We analyze how GR no longer avoid mismatches replaced by another p ∈ [1, ∞), find Lp-based (1 ≤ < ∞) having inconsistently large preference regions. When small value, some middle have very regions so their direction vectors cannot pass through corresponding Therefore, we propose generalized (GLp) ensure subproblem’s vector passes its region. Our theoretical analysis shows always using GLp ≥ 1. experimental studies on various conform analysis.
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization
Let Rn be the n-dimensional real Euclidean space, x = (x1, x2, . . . , xn) ∈ Rn be a generic vector, where the superscript T means transpose. Let x, y ∈ Rn, we denote by yTx the Euclidean scalar product, by ‖x‖ = (xTx)1/2 the Euclidean norm and by the symbols x < y and x ≤ y, x, y ∈ Rn the componentwise inequalities, that is: xi < yi, xi ≤ yi, i = 1, 2, . . . , n. Let us denote by Uδ(x̂) the ope...
متن کاملA NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES
This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...
متن کاملMulti-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization
Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i10.26474